If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40y-7=12y^2
We move all terms to the left:
40y-7-(12y^2)=0
determiningTheFunctionDomain -12y^2+40y-7=0
a = -12; b = 40; c = -7;
Δ = b2-4ac
Δ = 402-4·(-12)·(-7)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{79}}{2*-12}=\frac{-40-4\sqrt{79}}{-24} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{79}}{2*-12}=\frac{-40+4\sqrt{79}}{-24} $
| -14=8-5x | | 5(3n-1)=55 | | 3(9+4x)=123 | | 2y-8=22-4y | | 2(7x-10)=36 | | 3x+2(x+7)=-11 | | 13×6=3x | | 38=4x+7x+5 | | (x-7/2)^2=0 | | -14-4x-3=3x-8-5x | | -x-3+7x=57 | | 6x+7=x+87 | | q(-4)+(1-q)(-4+5)=0 | | 1+8a=129 | | 1+8a=59 | | 3^4x+1=5 | | 8=10r+8-2r | | F=-6+2.5x | | X²-6x+20=0 | | 3(2x-4)=5x-(-3x+7) | | (x+9)2=121 | | 7y-2y-15=-5 | | X²+14x−176=0 | | X²+14x-176=0 | | 25x-5x=45+15 | | -x-59=85 | | 2a=-3a+1 | | x-39=74 | | -x+24=41 | | -9y=-2y-14 | | -9y=-2y-1 | | x+.9x=150 |